## Exercise 11

Convert each of the following Volterra integral equation in 9-16 to an equivalent IVP:

$$
u(x)=1+x^{2}+\int_{0}^{x}(x-t) u(t) d t
$$

## Solution

Differentiate both sides with respect to $x$.

$$
u^{\prime}(x)=2 x+\frac{d}{d x} \int_{0}^{x}(x-t) u(t) d t
$$

Use the Leibnitz rule to differentiate the integral.

$$
\begin{gathered}
u^{\prime}(x)=2 x+\int_{0}^{x} \frac{\partial}{\partial x}(x-t) u(t) d t+(0) u(x) \cdot 1-(x) u(0) \cdot 0 \\
u^{\prime}=2 x+\int_{0}^{x} u(t) d t
\end{gathered}
$$

Differentiate both sides with respect to $x$ again.

$$
\begin{gathered}
u^{\prime \prime}=2+\frac{d}{d x} \int_{0}^{x} u(t) d t \\
u^{\prime \prime}=2+u(x) \\
u^{\prime \prime}-u=2
\end{gathered}
$$

The initial conditions to this ODE are found by plugging in $x=0$ into the original integral equation,

$$
u(0)=1+0^{2}+\int_{0}^{0}(0-t) u(t) d t=1
$$

and the formula for $u^{\prime}$,

$$
u^{\prime}(0)=2(0)+\int_{0}^{0} u(t) d t=0
$$

Therefore, the equivalent IVP is

$$
u^{\prime \prime}-u=2, u(0)=1, u^{\prime}(0)=0
$$

